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Abstract It is shown that the extent of deviation of a molecular shape from spherical
can be characterized by comparing the distribution of the circular variances, a measure
originally proposed to quantify angular spread, of the vectors from each atom to the
rest of the molecule to the circular variance of a collection of atoms filling the unit
sphere. Different measures for quantifying the difference between distribution are
proposed and compared.
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1 Introduction

Molecular shape is an important property in determining the behavior of molecules
[1]. For example, the molecular shape would affect the hydrodynamic properties of
proteins. One important shape descriptor is the deviation of the shape from spherical,
called sphericity.

Since the sphere is the shape with the smallest surface for a give volume, deviation
from sphericity traditionally is measured by the ratio of the surface of the object
in question and the surface of the sphere whose volume matches the volume of the
object. However, it is hard to apply this definition to a protein (or, in general to a
macromolecule) as such molecules are likely to have a number of internal cavities,
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pockets, invaginations. This approach has been applied to proteins by a judicious
definition of molecular surface [2]. A recent work [3] introduced a novel idea: measure
the sphericity by the work required to transform the surface of the molecule into a
sphere.

Circular variance (CV), a measure of directional spread [4], has been shown to be
useful for characterizing macromolecular topography [5] and molecular surfaces [6].
The aim of this paper is to show that CV can also be used to characterize molecular
sphericity. It is suggested that the distribution of the CV values of the set of vectors
drawn from each atom of a macromolecule (typically a protein) to the rest of the atoms
be compared to the same distribution of a set of uniformly distributed points filling a
sphere; the difference between the two distributions will be ameasure of the difference
between that molecule’s shape and a sphere.

2 Methods

The circular variance C of vectors �vi is defined [4] as
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When all �vi vectors are parallel, C = 0. It has been proposed in [5] that the CV of
vectors drawn from a test point �R to atoms �rι of a macromolecule provides a 0–1 scale
for the test point being in the middle of the macromolecule or it being way outside:
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In addition, an analog of CV whose properties are very similar to CV, called weighted
circular variance (Cw), has also been defined [5]:

Cw = 1 − | ∑i �ri − �R|
∑

i |�ri − �R| ; 0 ≤ Cw ≤ 1.0 (3)

In the present work it is proposed that the distribution of the C or Cw values generated
for all protein atoms with respect to all other atoms can be used to derive a measure
of the sphericity of that molecule. This measure can be obtained via the comparison
of various scalar measures of the CV distribution calculated for the atoms of the
molecule in question and of a sufficiently fine uniformly distributed set of points
within the unit sphere. Several different measures were considered for quantifying the
difference between two CV distributions: (a) direct comparison of the distributions:
∫(�ρ)2, ∫(�P)2, ∫ |�ρ|, ∫ |�P|where the integralswere approximated by sumsover
the discrete bins the distributions were calculated (50 bins in the [0, 1] interval) and
(b) comparison of the power sums Pm

123



2186 J Math Chem (2015) 53:2184–2190
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or moments Mm
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where n is the number of points that contributed to the CV distributions and C̄ is the
average ofC over the set of points. Note, that there is an important difference in the two
types of measures: comparison of the explicit distributions gives a discrete measure
since the distributions are calculated using finite bins while the measures using the
power or moment sums are continuous as a function of the coordinates.

For the reference point set a uniformly distributed set of points were generated in
the positive octant of the sphere in 20 layers of uniform thickness and transformed
into the other seven octant. All together 1,600,000 points were generated.

These measures were calculated for two different data sets, using both the original
definition and the weighted version. The first set consists of the same grid that was
used to obtain the reference distributions for the sphere but stretched along one axis by
a factor S(1.0 ≤ S ≤ 2.0). The second dataset is the 533 proteins extracted from the
CATH database in [3]. For each protein an approximate measure of the surface area
(A) and volume (V ) was calculated, allowing the estimate of their sphericity (Sph)
as:

Sph = π1/3 (6V )2/3 /A. (6)

followed by the calculation of the rank order correlation between the resulting spheric-
ities and the measures proposed here. Note, that Sph ≥ 1.0; Sph = 1.0 for a sphere.

The volume of a protein was approximated as the sum of the heavy-atom spheres
defined by the respective VdW radii and its surface area was obtained by the sum
of the exposed surface areas of the same spheres (calculated by an extension of the
program Gepol [7]). As in the earlier publication [6], surface atoms were defined as
having at least 3% exposed accessible surface (based on a probe radius of 1.4Å) and
having a CV value (w.r.t. the rest of the atoms) <0.8.

TheCVdistributions of the proteins and of a sphere, aswell as the various difference
measures discussedwere calculated by the programCVDISTR (written in Fortran-77).
It is available from the http://inka.mssm.edu/~mezei/cvdistr.

3 Results and discussion

The probability densities ρ(C), ρ(Cw) and cumulative probability distributions
P(C), P(Cw) calculated from the uniformly distributed random points in the unit
sphere are shown on Fig. 1. The same distributions were also calculated on a regular
lattice of comparable size. However, while the resulting distributions were close to the
ones obtained from the random points, they were significantly less smooth and thus
the random point distributions were used as the reference.
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Fig. 1 Probability density ρ(C) (full line, curve with peak), cumulative probability distribution P(C) (full
line, no peak), probability density ρ(Cw) (broken line, curve with peak), cumulative probability distribution
P(Cw) (broken line, no peak) of the circular variances calculated over a 1.6 × 106 uniformly distributed
random points within a sphere

The first test of the CV-based sphericity measure involved the same set of sphere-
filling point that was used to generate the reference distributions but stretched along
one of the axes by an increasingly larger factor. Table 1 gives the absolute and squared
differences between the probability densities and between the cumulative probabilities
for stretching factors 1.1, 1.2, 1.5 and 2.0, the absolute differences between the CV
power sums and moment sums to several different orders, as well as the change (w.r.t.
the sphere) in sphericity of the distorted spheres calculated from the surface and vol-
ume of the ellipsoids these points fill, along with the Pearson correlation coefficients
between the sphere sphericity change and the measures proposed. All measures pro-
posed, as well as the sphericity change, increase as the grid is increasingly distorted.
This means that the Spearman (rank order) correlation between the sphericity and the
proposed measure is 1.0, supporting the basic hypothesis of this paper. The calculated
Pearson correlations are also very high. For themeasures based on explicit comparison
of the distributions they are between 0.97 and 0.99 and uniformly 0.99 for all power
and moment sums shown. The highest correlation among the distribution-based mea-
sures was found for ∫ |�P|. No notable difference was observed between measures
using C or Cw in this test.

Next, the approximate sphericities of 533 protein domains were calculated and their
CV distributions ρ(C), P(C), (Cw) and P(Cw)were calculated. The Spearman (rank
order) and Pearson correlations between the sphericities and the proposed measures
are shown in Table 2. Among the measures based on the explicit distributions the best
performance was (based on both test) found with ∫ |�P|; no systematic difference
was found between C and Cw based measures. Measures based on the moment sums
converged at m = 2 and correlated with the sphericity significantly better using the
original C-based measure. On the other hand, the power sum based measures showed
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Table 1 Comparison of the different CV-based sphericity measures on progressively distorted spheres

Sphericity measure CV type Stretching factor P-corr

1.1 1.2 1.5 2.0

∫(�ρ)2 C 0.0015 0.0031 0.0069 0.0110 0.966

∫(�P)2 C 0.0010 0.0051 0.0476 0.2133 0.977

∫ |�ρ| C 0.0743 0.1362 0.3018 0.5028 0.974

∫ |�P| C 0.0907 0.2905 0.1930 2.8947 0.990

∫(�ρ)2 Cw 0.0013 0.0046 0.0125 0.0208 0.963

∫(�P)2 Cw 0.0125 0.0099 0.1014 0.4238 0.981

∫ |�ρ| Cw 0.0707 0.1607 0.4116 0.6936 0.970

∫ |�P| Cw 0.1136 0.3833 1.6291 3.9337 0.990

�P2 C 0.00045 0.00168 0.00854 0.02528 0.990

�M2 C 0.00008 0.00059 0.00141 0.00411 0.990

�P5 C 0.00079 0.00291 0.01474 0.04395 0.989

�M5 C 0.00009 0.00035 0.00177 0.00524 0.990

�P10 C 0.00091 0.00334 0.01695 0.05073 0.989

�M10 C 0.00009 0.00035 0.00177 0.00526 0.990

�P20 C 0.00094 0.00348 0.01768 0.05303 0.989

�M20 C 0.00009 0.00035 0.00177 0.00526 0.998

�P2 Cw 0.00035 0.00131 0.00679 0.02030 0.989

�M2 Cw 0.00013 0.00050 0.00258 0.00779 0.990

�P5 Cw 0.00065 0.00242 0.01253 0.03810 0.989

�M5 Cw 0.00015 0.00055 0.00286 0.00866 0.989

�P10 Cw 0.00074 0.00276 0.01430 0.04388 0.989

�M10 Cw 0.00015 0.00055 0.00289 0.00876 0.989

�P20 Cw 0.00076 0.00285 0.01484 0.04571 0.989

�M20 Cw 0.00015 0.00055 0.00289 0.00877 0.989

�Sph 0.0016 0.0057 0.0266 0.707

Stretching factor: ratio of the extended axis to the corresponding sphere radius; The integrals expressing
sphericity measures are calculated over the [0, 1] interval and involve the absolute or squared differences
of P(C), ρ(C), P(Cw), ρ(Cw), resp., �Pm and �Mm are the differences of Pm and Mm, calculated by
Eqs. (4) and (5), resp.; P-corr: Pearson correlation between �Sph and the measure; C or Cw in the second
column indicates whether the CV was calculated using Eq. (2) or Eq. (3); �Sph: 1.0-Sphericity calculated
from the ellipsoid volume and surface

progressively lower correlationwith the spericity asmwas increased but still correlated
better than the moment sum basedmeasures. Furthermore, for the power sums theCw-
based measures outperformed those that were based onC . The overall best correlation
was observed for �P2 using Cw. Note that the conclusions above hold for both types
of correlations calculated.

The extent of correlation between the proposed measure and the protein spherici-
ties is similar to the correlation observed in [3] between the measure introduced there
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Table 2 Correlation between
the calculated sphericity
measures and the approximate
sphericities calculated from the
molecular volumes and surfaces

The integrals expressing
sphericity measures are
calculated over the [0, 1] interval
and involve the absolute or
squared differences of
P(C), ρ(C), P(Cw), ρ(Cw),
resp., �Pm and �Mm are the
differences of Pm and Mm,
calculated by Eqs. (4) and (5),
resp.; C and Cw indicates
whether the CV was calculated
using Eq. (2) or Eq. (3)

Sphericity measure Spearman corr. Pearson corr.

C Cw C Cw

∫(�ρ)2 0.490 0.507 0.529 0.490

∫(�P)2 0.532 0.539 0.575 0.532

∫ |�ρ| 0.587 0.604 0.606 0.587

∫ |�P| 0.645 0.635 0.650 0.649

�P2 0.608 0.709 0.608 0.776

�M2 0.661 0.582 0.661 0.598

�P5 0.598 0.674 0.615 0.744

�M5 0.668 0.594 0.687 0.610

�P10 0.592 0.660 0.614 0.733

�M10 0.669 0.594 0.688 0.610

�P20 0.589 0.653 0.611 0.723

�M20 0.669 0.594 0.688 0.594

and the sphericity. Some difference from the full correlation can be attributed to the
approximate calculation of the sphericities but certainly not all. The rest of the differ-
ence is ‘real’, reflecting the fact that quantification of the concept of sphericity of an
irregular shape is not a uniquely defined process.

The major advantage of the proposed sphericity measure is that there is no need
to define the surface of the molecule and there are no restrictions on the shape of the
molecule; it only needs the atomic coordinates. While the complexity of the proposed
measure is quadratic in the number of atoms (quite high) there is a natural limit of
molecule size where such measure is likely to be of interest, typically for a single
protein domain.

The measures based on the CV power sums or moment sums are, unlike the mea-
sures based on explicit calculation of distributions, continuous as a function of the
atomic coordinates. This means that only members of this class of measures are
amenable to be used for restraining the molecular shape to a certain level of sphericity
during simulations.
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